
Data Compression

• Fax machine: 40000 DPSI => 4 million dots per
page

• 56 KBPS modem, time to transmit = ?
• Video: 30 pictures per second
• Each picture = 200,000 dots or pixels
• 8-bits to represent each primary color
• Bits required for one picture = ?
• Two hour movie requires = ?

Why we need data compression?

Introduction

• Compression is a way to reduce the number of
bits in a frame but retaining its meaning.

• Decreases space, time to transmit, and cost

• Technique is to identify redundancy and to
eliminate it

• If a file contains only capital letters, we may
encode all the 26 alphabets using 5-bit
numbers instead of 8-bit ASCII code

Introduction

• If the file had n-characters, then the savings =
(8n-5n)/8n => 37.5%

Frequency Dependent Codes

• Not all the characters appear with same
frequency, some are more prevalent than the
others

• Frequently appearing characters could be
assigned shorter codes than the others =>
results in reduced number of bits

• Such codes are examples of frequency
dependent code

Frequency Dependent Codes

• Huffman code: (illustrated with a manageable
example)

Letter Frequency (%)
A 25
B 15
C 10
D 20
E 30

Frequency Dependent Codes

• Huffman code: Code formation

- Assign weights to each character

- Merge two lightest weights into one root node
with sum of weights (if multiple? Not unique
code)

- Repeat until one tree is left

- Traverse the tree from root to the leaf (for
each node, assign 0 to the left, 1 to the right)

Frequency Dependent Codes

• Huffman code: Code Interpretation

- No prefix property: code for any character
never appears as the prefix of another code
(Verify)

- Receiver continues to receive bits until it finds
a code and forms the character

- 01110001110110110111 (extract the string)

Frequency Dependent Codes

• Arithmetic compression: is based on Interpreting
a character-string as a single real number

Letter Frequency (%) Subinterval [p, q]

A 25 [0, 0.25]

B 15 [0.25, 0.40]

C 10 [0.40, 0.50]

D 20 ?

E 30 ?

Frequency Dependent Codes

• Arithmetic compression: Coding ‘CABAC’
• Generate subintervals of decreasing length,

subintervals depend uniquely on the string’s
characters and their frequencies.

• Interval [x, y] has width w = y – x, the new
interval based on [p, q] is x = x + w.p, y = x +
w.q

• Step 1: ‘C’ 0………..0.4…….0.5…………..1
based on p = 0.4, q = 0.5

Frequency Dependent Codes

• Step 2: ‘A’ 0.4………0.425..…….…………..0.5
based on p = 0.0, q = 0.25
• Step 3: ‘B’

0.4……0.40625………0.41…..……0.425
based on p = 0.25, q = 0.4
Step 4: ‘A’
Step 5: ‘C’

…0.406625… 0.4067187…
Final representation (midpoint)?

Frequency Dependent Codes

• Arithmetic compression: Extracting ‘CABAC’

N Interval[p, q] Width Character N-p (N-p)/width

0.4067 0.4 – 0.5 0.1 C 0.0067 0.067

0.067 0 – 0.25 0.25 A 0.067 0.268

0.268 0.25 – 0.4 0.15 B 0.018 0.12

?

?

When to stop? A terminal character is added to the original

character set and encoded. During decompression, once it is

encountered the process stops.

Run Length Encoding

• Huffman code requires:

- frequency values

- bits are grouped into characters or units

Many items do not fall into such category

- machine code files

- facsimile Data (bits corresponding to light or
dark area of a page)

- video signals

Run Length Encoding

• For such files, RLE is used.

• ‘Instead of sending long runs of ‘0’s or ‘1’s, it
sends only how many are in the run.’

• 70%-80% space is white on a typed character
space, so RLE is useful.

A

Run Length Encoding
• Runs of the same bit

• In facsimile Data, there are many ‘0’s (white
spots) –> transmit the run-length as fixed size
binary integer

• Receiver generates proper number of bits in
the run and inserts the other bit in between

• 14 zeros, 1, 9 zeros, 11, 20 zeros, 1, 30 zeros,
11, 11 zeros (number of zeros encoded in 4-
bits)

Run Length Encoding
• Runs of the same bit

• Code: 1110 1001 0000 1111 0101 1111 1111
0000 0000 1011

• (next value after 1111 is added to the run)

• SAVINGS IN BITS: ?

• If the stream started with ‘1’ instead?

• Best when there are many long runs of zeros,
with increased frequency of ‘1’s, becomes less
efficient.

Run Length Encoding

• Runs with different characters

• Send the actual character with the run-length

• HHHHHHHUFFFFFFFFFYYYYYYYYYYYDGGGGG

• code = 7, H, 1, U, 9, F, 11, Y, 1, D, 5, G
• SAVINGS IN BITS (considering ASCII): ?

Run Length Encoding

• Facsimile Compression

• ITU standard (A4 document, 210 by 297 mm)

• 1728 pixels per line

• If 1 bit for each pixel, then over 3 million bits
for each page

• A typical page contains many consecutive
white or black pixels -> RLE

Run Length Encoding

• Run lengths may vary from 0 to 1728 -> many

Possibilities and inefficiency with a fixed size code

• Some runs occur more frequently than others,
e.g. most typed pages contain 80% white
pixels, spacing between letters is fairly
consistent

• => probabilities of certain runs are predictable

• => Frequency dependent code on run lengths

Run Length Encoding
• Some Facsimile compression codes

(Terminating, less than 64)

Pixels in the run Code: White Code: Black

0 00110101 0000110111

1 000111 010

2 0111 11

3 1000 10

10 00111 0000100

20 0001000 00001101000

Run Length Encoding
• Some Facsimile compression codes (Make up,

greater than or equal to 64)

Pixels in the run Code: White Code: Black

64 11011 0000001111

128 10010 000011001000

256

512

129 white: Savings:
No-prefix property, better compression for long-runs

Relative Encoding

• Relative Encoding:

• Some applications may not benefit from the
above: video image -> little repetitive within,
but much repetition from one image to the
next

• Differential encoding is based on coding only
the difference from one to the next

Relative Encoding

• Relative Encoding:

• 1 2 3 4 1 3 3 4 0 1 0 0

2 5 3 7 2 5 3 7 0 0 0 0

3 6 4 8 3 6 4 7 0 0 0 -1

4 7 5 9 3 7 5 9 -1 0 0 0

1st Frame 2nd Frame Difference

Resulting difference can be RLE.

Image Representation

• BW pixels each represented by 8-bit level

• Color composed of R, G, B primaries, each is
represented by 8-bit level

-> Each color pixel can be represented by one of

28 .28.28 = 224 colors

VGA screen: 640 * 480 pixels

-> 640 * 480 * 24 = 7, 372, 800 bits

Image Compression

• JPEG compression – both for grayscale and
color images

• Previous compression methods were lossless –
it was possible to recover all the information
from the compressed code

• JPEG is lossy: image recovered may not be the
same as the original

JPEG Compression

• It consists of three phases: Discrete Cosine
Transform (DCT), Quantization, Encoding.

• DCT:

Image is divided into blocks of 8*8 pixels

For grey-scale images, pixel is represented by
8-bits

For color images, pixel is represented by 24-
bits or three 8-bit groups

JPEG Compression

• DCT takes an 8*8 matrix and produces another
8*8 matrix.

• T[i][j] = 0.25 C(i) C(j) ∑ ∑ P[x][y] Cos
(2x+1)iπ/16 * Cos (2y+1)jπ/16

i = 0, 1, …7, j = 0, 1, …7
C(i) = 1/√2, i =0

= 1 otherwise
T contains values called ‘Spatial frequencies’

JPEG Compression

• Spatial frequencies directly relate to how
much the pixel values change as a function of
their positions in the block

• T[0][0] is called the DC coefficient, related to
average values in the array/matrix, Cos 0 = 1

• Other values of T are called AC coefficients,
cosine functions of higher frequencies

JPEG Compression

• Case 1: all P’s are same => image of single
color with no variation at all, AC coefficients
are all zeros.

• Case 2: little variation in P’s => many, not all,
AC coefficients are zeros.

• Case 3: large variation in P’s => a few AC
coefficients are zeros.

JPEG Compression
P-matrix T-matrix

• 20 30 40 50 60 … 720 -182 0 -19 0 …

30 40 50 60 70 -182 0 0 0 0

40 50 60 70 80 0 0 0 0 0

50 60 70 80 90 -19 0 0 0 0

60 70 80 90 100 0 0 0 0 0

… …

‘Uniform color change and little fine detail,
easier to compress after DCT’

JPEG Compression
P-matrix T-matrix

• 100 150 50 100 100 … 835 15 -17 59 5…

200 10 110 20 200 46 -60 -36 11 14

10 200 130 30 200 -32 -9 130 105 -37

100 10 90 190 120 59 -3 27 -12 30

10 200 200 120 90 50 -71 -24 -56 -40

…. ….

‘Large color change, difficult to compress after
DCT ’

JPEG Compression

• To restore, inverse DCT (IDCT) is performed:

• P[x][y] = 0.25 ∑ ∑ C(i) C(j) T[i][j] Cos
(2x+1)iπ/16 * Cos (2y+1)jπ/16

x = 0, 1, …7, y = 0, 1, …7
Can write a C-program to apply DCT on a P-

array (8*8) to obtain T-array and also IDCT on
T-array to recover P-array.

JPEG Compression

• Quantization: Provides an way of ignoring
small differences in an image that may not be
perceptible.

• Another array Q is obtained by dividing each
element of T by some number and rounding-
off to nearest integer => loss

JPEG Compression
T-matrix Q-matrix

• 152 0 -48 0 -8… 15 0 -5 0 -1…

0 0 0 0 0 0 0 0 0 0

-48 0 38 0 -3 -5 0 4 0 0

0 0 0 0 0 0 0 0 0 0

-8 0 -3 0 13 -1 0 0 0 1

… …

‘Divide by 10 and round-off’ => ‘creates fewer

distinct numbers and more consistent pattern’

JPEG Compression
• Can we recover by multiplying the elements

with 10?

• If the loss is minimal, the vision system may
not notice.

• Dividing T-elements by the same number is
not practical, may result in too much loss.

• Retain the effects of lower spatial frequencies
as much as possible – less subtle features
noticed if changed

JPEG Compression

• Upper left elements to be divided with smaller
values

• Lower right elements – higher spatial
frequencies, finer details - to be divided with
larger values

• To define a quantization array U, then

Q[i][j] = Round (T[i][j] ÷ U[i][j]), i = 0, 1, …7, j
= 0, 1, …7

JPEG Compression

• U = 1 3 5 7 9… Q= 152 0 -10 0 -1 …

3 5 7 9 11 0 0 0 0 0

5 7 9 11 13 -10 0 4 0 0

7 9 11 13 15 0 0 0 0 0

9 11 13 15 17 -1 0 0 0 0

… …

‘Q can be well-compressed due to redundant

elements’

JPEG Compression
• Encoding 152 0 -10 0 -1 …

- linearize two 0 0 0 0 0

dimensional data -10 0 4 0 0

and compress it 0 0 0 0 0

-1 0 0 0 0

…

- Row-wise (shorter runs)

- Zigzag (longer runs, higher spatial frequencies
are gathered together)

JPEG Compression

• Many such 8*8 arrays, adjacent blocks with
little difference => more potential for
compression

• JPEG may provide 95% compression (depends
on image and quantization array)

• GIF (Graphic Image Format) reduces color to
256. Best suited for a few colors and sharp
boundaries (charts, lines). Not good for
variations and shading – full color photo

Multimedia Compression

• JPEG compresses still pictures, motion
pictures are compressed by MPEG.

• Still picture contains 7, 372,800 bits.

• Compression ratio 20:1 reduces the bits to
368,640

• With 30 images per second, bits to be handled
11,059,200.

=> Huge data transmission if channel is shared

Multimedia Compression

• Based on JPEG compression and relative
encoding

• Usually little difference from one to the next
frame => suitable for compression

• A completely new scene can not be
compressed this way. Also, not suited for
moving objects unleashing other objects.

• Three frames: I, P, B.

Multimedia Compression

• I (intra-picture) - frame: Just a JPEG encoded
image.

• P (predicted) – frame: Encoded by computing
the differences between a current and a
previous frame.

• B (bidirectional) - frame: Similar to P-frame
except that it is interpolated between
previous and future frame.

Multimedia Compression

• I-frames must appear periodically in any frame
sequence, otherwise:

- any error introduced in any frame is
propagated in all subsequent frames if relative
differences are sent

- in broadcast applications, if one tunes-in
late, then he has nothing to compare to

Multimedia Compression

• Typical sequence:

order in which to transmit: I – P – I

P is sandwiched between groups of B

P is the difference from the previous I-frame

B is interpolated from the nearest I and P

order in which to display I – B – B – P – B – B – I

Multimedia Compression

• Coding P:

• Motion compensated Prediction for P-frames

• Divide the image into macro-blocks of 256
pixels (16*16)

• Chrominance arrays are reduced to groups of
4 pixels (becomes 8*8 matrix) representing
average values => loss, not perceptible

Multimedia Compression
• An algorithm examines each macro-block of P-

frame and locates a best matching macro-
block in the prior I-frame

• Not necessarily in the same relative position
(in the vicinity)

• Once located, the algorithm calculates the
difference and motion vector (displacement)

• The above information is encoded and
transmitted

Multimedia Compression

• At the decoding end, the motion-vector is
used to determine the position and the
difference is used to reconstruct the macro-
block

Multimedia Compression

• MP3 (MPEG Level 3) – compression protocol
for audio

• Audible range: 20 – 20 KHz

• PCM uses 16 bit samples @ 44.1 KHz

• 1-sec of PCM audio needs: 16*44.1*1000 bits

• For two channel stereo: Twice

• For 1-minute audio: 60 times -> 88 Mbits

Multimedia Compression
• MP3 is based on a ‘psychoacoustic model’ –

what we can hear and what we can distinguish

• ‘Auditory masking’ – capture an audio signal,
determine what we can not hear, remove
those components from the stream, digitize
what is left

• ‘Sub-band coding’ – decompose the original
signal into non-overlapping frequency ranges,
create bit-stream for each band

Multimedia Compression

• Sub-bands are encoded differently:

• Sub-bands with loud signals need good
resolution, are coded with more bits

• Near-by sub-bands with weak signals are
effectively masked by louder signals, need less
resolution, are coded with fewer bits, that
results in compression

