

Why we need data compression?

Fax machine: 40000 DPSI => 4 million dots per
page

56 KBPS modem, time to transmit = ?

Video: 30 pictures per second

Each picture = 200,000 dots or pixels

8-bits to represent each primary color

Bits required for one picture = ?

Two hour movie requires = ?

Introduction

Compression Is a way to reduce the number of
bits in a frame but retaining its meaning.

Decreases space, time to transmit, and cost

Technique is to identify redundancy and to
eliminate It

If a file contains only capital letters, we may
encode all the 26 alphabets using 5-bit
numbers instead of 8-bit ASCIl code

Introduction

o If the file had n-characters, then the savings =
(8n-5n)/8n => 37.5%

Frequency Dependent Codes

* Not all the characters appear with same
frequency, some are more prevalent than the
others

* Frequently appearing characters could be
assigned shorter codes than the others =>
results in reduced number of bits

« Such codes are examples of frequency
dependent code

Frequency Dependent Codes

« Huffman code: (illustrated with a manageable
example)

Letter Frequency (%)

A 25
B 15
C 10
D 20
E 30

Frequency Dependent Codes

 Huffman code: Code formation
- Assign weights to each character

- Merge two lightest weights into one root node
with sum of weights (if multiple? Not unique
code)

- Repeat until one tree Is left

- Traverse the tree from root to the leaf (for
each node, assign 0 to the left, 1 to the right)

Frequency Dependent Codes

« Huffman code: Code Interpretation

- No prefix property: code for any character
never appears as the prefix of another code
(Verify)

- Recelver continues to receive bits until it finds
a code and forms the character

- 01110001110110110111 (extract the string)

Frequency Dependent Codes

 Arithmetic compression: is based on Interpreting
a character-string as a single real number

Letter Frequency (%) Subinterval [p, d]

A 25 0, 0.25]

B 15 0.25, 0.40]
C 10 0.40, 0.50]
D 20 ?

E 30 ?

Frequency Dependent Codes

« Arithmetic compression: Coding ‘CABAC’

« Generate subintervals of decreasing length,

subintervals depend uniguely on the string’s
characters and their frequencies.

 Interval [x, y] has width w =y — X, the new
Interval based on [p,] ISX=x+w.p,y =X+
W.Q

e Step 1:°'C’0........... 04....05..... 1
basedonp=0.4,9=0.5

Frequency Dependent Codes

o Step2: ‘A’04....... 0.425.......cccccceive. 0.5
based on p=0.0,g=0.25
e Step 3: ‘B’

0.4....0.40625......... 041....... 0.425
basedonp=0.25,q9=0.4
Step 4. ‘A’
Step 5: 'C
..0.406625... 0.4067187 ...
Final representation (midpoint)?

Frequency Dependent Codes

« Arithmetic compression: Extracting ‘CABAC’

N Interval[p, q] Width Character N-p (N-p)/width
0.4067 0.4-0.5 0.1 C 0.0067 0.067

0.067 0-0.25 025 A 0.067 0.268

0.268 0.25-0.4 0.15 B 0.018 0.12

?

2

When to stop? A terminal character is added to the original
character set and encoded. During decompression, once it is
encountered the process stops.

Run Length Encoding

e Huffman code requires:

- frequency values

- bits are grouped Into characters or units
Many items do not fall into such category

- machine code files

- facsimile Data (bits corresponding to light or
dark area of a page)

- video signals

Run Length Encoding

e For such files, RLE Is used.

 ‘Instead of sending long runs of ‘O’s or ‘1’s, It
sends only how many are in the run.’

* 7/0%-80% space Is white on a typed character
space, so RLE Is useful.

A

Run Length Encoding

Runs of the same bit

In facsimile Data, there are many ‘O’s (white
spots) —> transmit the run-length as fixed size
binary integer

Receiver generates proper number of bits In
the run and inserts the other bit in between

14 zeros, 1, 9 zeros, 11, 20 zeros, 1, 30 zeros,
11, 11 zeros (number of zeros encoded In 4-
bits)

Run Length Encoding

Runs of the same bit

Code: 11101001 0000 11110101 1111 1111
0000 0000 1011

(next value after 1111 i1s added to the run)
SAVINGS IN BITS: ?
If the stream started with ‘1’ instead?

Best when there are many long runs of zeros,
with increased frequency of ‘1’s, becomes less
efficient.

Run Length Encoding

e Runs with different characters

« Send the actual character with the run-length
e HHHHHHHUFFFFFFFFFYYYYYYYYYYYDGGGGG
e code=7,H,1,U,9,F11,Y,1,D,5,G

o SAVINGS IN BITS (considering ASCII): ?

Run Length Encoding

Facsimile Compression
ITU standard (A4 document, 210 by 297 mm)
1728 pixels per line

If 1 bit for each pixel, then over 3 million bits
for each page

A typical page contains many consecutive
white or black pixels -> RLE

Run Length Encoding

e Run lengths may vary from 0 to 1728 -> many
Possibilities and inefficiency with a fixed size code

e Some runs occur more frequently than others,
e.g. most typed pages contain 80% white
pixels, spacing between letters Is fairly
consistent

 => probabilities of certain runs are predictable
* =>Frequency dependent code on run lengths

Run Length Encoding

e Some Facsimile compression codes
(Terminating, less than 64)

Pixels in the run Code: White Code: Black

0 00110101 0000110111
1 000111 010

2 0111 11

3 1000 10

10 00111 0000100

20 0001000 00001101000

Run Length Encoding

e Some Facsimile compression codes (Make up,
greater than or equal to 64)

Pixels in the run Code: White Code: Black

04 11011 0000001111
128 10010 000011001000
256

512

129 white: Savings:
No-prefix property, better compression for long-runs

Relative Encoding

 Relative Encoding:

« Some applications may not benefit from the
above: video image -> little repetitive within,
but much repetition from one image to the
next

 Differential encoding Is based on coding only
the difference from one to the next

Relative Encoding

 Relative Encoding:

e 1234 1334 0100
2537 2537 0000
3648 3647 000-1
4759 3759 -1000
15t Frame 2"d Frame Difference

Resulting difference can be RLE.

Image Representation

« BW pixels each represented by 8-bit level

e Color composed of R, G, B primaries, each Is
represented by 8-bit level

-> Each color pixel can be represented by one of
28.28.28 = 224 colors

VGA screen: 640 * 480 pixels

-> 640 * 480 * 24 =7, 372, 800 bits

Image Compression

« JPEG compression — both for grayscale and
color images

e Previous compression methods were lossless —
It was possible to recover all the information
from the compressed code

* JPEG Is lossy: Image recovered may not be the
same as the original

JPEG Compression

o |t consists of three phases: Discrete Cosine
Transform (DCT), Quantization, Encoding.

Image Is divided into blocks of 8*8 pixels

For grey-scale images, pixel is represented by
8-Dits

For color Images, pixel is represented by 24-
bits or three 8-bit groups

JPEG Compression

e DCT takes an 8*8 matrix and produces another
8*8 matrix.

* TH]D]=0.25C(1) C(J) 2. > PIx]ly] Cos
(2x+1)iTr/16 * Cos (2y+1)jT1/16
1=0,1,...7,]=0,1, ...7
C(i) = 172, i =0
= 1 otherwise
T contains values called ‘Spatial frequencies’

JPEG Compression

« Spatial frequencies directly relate to
as a function of
their positions in the block

* T[0][O] is called the DC coefficient, related to
average values in the array/matrix, Cos0 =1

o Other values of T are called AC coefficients,
cosine functions of higher frequencies

JPEG Compression

e Case 1: all P’s are same => Image of single
color with no variation at all, AC coefficients
are all zeros.

e Case 2: little variation in P’s => many, not all,
AC coefficients are zeros.

e Case 3: large variation in P’s => a few AC
coefficients are zeros.

JPEG Compression
P-matrix T-matrix
e 2030405060.. 720-1820-190...
30405060 70 -182 0 0 0 O

40 50 60 70 80 0 0 00O
50 60 70 80 90 -19 0 000
60 /08090100 O 0 00O

‘Uniform color change and little fine detall,
easler to compress after DCT’

JPEG Compression

P-matrix T-matrix

« 10015050100 100.. 83515-17595...
20010 11020 200 46 -60-3611 14
10 200 130 30 200 -32 -9130 105 -37
10010 90 190 120 50 -3 27 -12 30
10 200200 12090 50 -71-24 -56 -40

‘Large color change, difficult to compress after
DCT"’

JPEG Compression

 To restore, inverse DCT (IDCT) Is performed:

* PIX]ly] =0.25 > > C(1) C() Ti]0] Cos
(2x+1)iTr/16 * Cos (2y+1)jT1/16

x=0,1,..7,y=0,1, ...7

Can write a C-program to apply DCT on a P-

array (8*8) to obtain T-array and also IDCT on
T-array to recover P-array.

JPEG Compression

* Quantization: Provides an way of ignoring
small differences in an image that may not be
perceptible.

* Another array Q is obtained by dividing each
element of T by some number and rounding-
off to nearest integer => loss

JPEG Compression

T-matrix Q-matrix

e 1520-480-8... 150-50-1...
0 00 0O 0 0000O
-48038 0 -3 50400
0 00O0O 0 0000O
-8 0 -3 013 -1 0 001

‘Divide by 10 and round-off’ => ‘creates fewer
distinct numbers and more consistent pattern’

JPEG Compression

Can we recover by multiplying the elements
with 107?

If the loss Is minimal, the vision system may
not notice.

Dividing T-elements by the same number Is
not practical, may result in too much loss.

Retain the effects of lower spatial frequencies
as much as possible — less subtle features
noticed If changed

JPEG Compression

« Upper left elements to be divided with smaller
values

* Lower right elements — higher spatial
frequencies, finer details - to be divided with

larger values
» To define a quantization array U, then

Q[ilj] =Round (T[i]j] = UIljD,1=0, 1, ... 7, |
=0,1,...7

JPEG Compression

e U= 79.. Q= 1520-100-1..
911 0O 0 00O

57 9 1113 -10 0 400
79111315 0O 0 00O
911131517 -1 0 000

‘Q can be well-compressed due to redundant
elements’

JPEG Compression
1520-100-1 ...

- linearize two 0 0 00O
dimensionaldata -10 O 4 0 O

andcompressit 0 O 00O
-1 0 00O

- Row-wise (shorter runs)

- ZIlgzag (longer runs, higher spatial frequencies
are gathered together)

JPEG Compression

« Many such 8*8 arrays, adjacent blocks with
little difference => more potential for
compression

* JPEG may provide 95% compression (depends
on image and quantization array)

* GIF (Graphic Image Format) reduces color to
256. Best suited for a few colors and sharp
boundaries (charts, lines). Not good for
variations and shading — full color photo

Multimedia Compression

» JPEG compresses still pictures, motion
pictures are compressed by MPEG.

o Still picture contains 7, 372,800 bits.

o Compression ratio 20:1 reduces the bits to
368,640

 With 30 images per second, bits to be handled
11,059,200.

=> Huge data transmission If channel is shared

Multimedia Compression

Based on JPEG compression and relative
encoding

Usually little difference from one to the next
frame => suitable for compression

A completely new scene can not be
compressed this way. Also, not suited for
moving objects unleashing other objects.

Three frames: |, P, B.

Multimedia Compression

* | (Intra-picture) - frame: Just a JPEG encoded
Image.
* P (predicted) — frame: Encoded by computing

the differences between a current and a
previous frame.

« B (bidirectional) - frame: Similar to P-frame
except that it Is interpolated between
previous and future frame.

Multimedia Compression

 |-frames must appear periodically in any frame
sequence, otherwise:

- any error introduced In any frame Is
propagated in all subsequent frames Iif relative
differences are sent

- In broadcast applications, If one tunes-in
late, then he has nothing to compare to

Multimedia Compression

* Typical sequence:

order in which to transmit: | - P —

P 1s sandwiched between groups of B

P Is the difference from the previous I-frame
B Is Interpolated from the nearest | and P
order in which to display | -B-B-P-B-B -

Multimedia Compression

« Motion compensated Prediction for P-frames

 Divide the Image into macro-blocks of 256
pixels (16*16)
« Chrominance arrays are reduced to groups of

4 pixels (becomes 8*8 matrix) representing
average values => loss, not perceptible

Multimedia Compression

 An algorithm examines each macro-block of P-
frame and locates a best matching macro-
block in the prior |-frame

« Not necessarily in the same relative position
(In the vicinity)

* Once located, the algorithm calculates the
difference and motion vector (displacement)

 The above information 1s encoded and
transmitted

Multimedia Compression

At the decoding end, the motion-vector Is
used to determine the position and the

difference Is used to reconstruct the macro-
block

Multimedia Compression

MP3 (MPEG Level 3) — compression protocol
for audio

Audible range: 20 — 20 KHz

PCM uses 16 bit samples @ 44.1 KHz

1-sec of PCM audio needs: 16*44.1*1000 bits
For two channel stereo: Twice

For 1-minute audio: 60 times -> 88 Mbits

Multimedia Compression

« MP3 Is based on a ‘psychoacoustic model’ —
what we can hear and what we can distinguish

o ‘Auditory masking’ — capture an audio signal,
determine what we can not hear, remove
those components from the stream, digitize
what Is left

e ‘Sub-band coding’ — decompose the original
signal into non-overlapping frequency ranges,
create bit-stream for each band

Multimedia Compression

e Sub-bands are encoded different

Y.

« Sub-bands with loud signals need good

resolution, are coded with more

DItS

e Near-by sub-bands with weak signals are
effectively masked by louder signals, need less

resolution, are coded with fewer
results In compression

bits, that

